Symmetries and integrability of discrete equations defined on a black–white lattice

نویسنده

  • P D Xenitidis
چکیده

We study the deformations of the H equations, presented recently by Adler, Bobenko and Suris, which are naturally defined on a black-white lattice. For each one of these equations, two different three-leg forms are constructed, leading to two different discrete Toda type equations. Their multidimensional consistency leads to Bäcklund transformations relating different members of this class, as well as to Lax pairs. Their symmetry analysis is presented yielding infinite hierarchies of generalized symmetries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 3 . 31 52 v 1 [ nl in . S I ] 1 8 M ar 2 00 9 Symmetries and integrability of discrete equations defined on a black – white lattice

We study the deformations of the H equations, presented recently by Adler, Bobenko and Suris, which are naturally defined on a black-white lattice. For each one of these equations, two different three-leg forms are constructed, leading to two different discrete Toda type equations. Their multidimensional consistency leads to Bäcklund transformations relating different members of this class, as ...

متن کامل

Computation of Higher-order Symmetries for Nonlinear Evolution and Lattice Equations

A straightforward algorithm for the symbolic computation of higher-order symmetries of nonlinear evolution equations and lattice equations is presented. The scaling properties of the evolution or lattice equations are used to determine the polynomial form of the higher-order symmetries. The coefficients of the symmetry can be found by solving a linear system. The method applies to polynomial sy...

متن کامل

On Black-Scholes equation; method of Heir-equations‎, ‎nonlinear self-adjointness and conservation laws

In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.

متن کامل

ar X iv : s ol v - in t / 9 80 30 05 v 1 6 M ar 1 99 8 Algorithmic Integrability Tests for Nonlinear Differential and Lattice Equations 1

Three symbolic algorithms for testing the integrability of polynomial systems of partial differential and differential-difference equations are presented. The first algorithm is the well-known Painlevé test, which is applicable to polynomial systems of ordinary and partial differential equations. The second and third algorithms allow one to explicitly compute polynomial conserved densities and ...

متن کامل

An Approach to Master Symmetries of Lattice Equations

Symmetries are one of important aspects of soliton theory. When any integrable character hasn’t been found for a given equation, among the most efficient ways is to consider its symmetries. It is through symmetries that Russian scientists et al. classified many integrable equations including lattice equations [1] [2]. They gave some specific description for the integrability of nonlinear equati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009